Our research

Our vision is to bring together the expertise of the Universities of Nottingham, Sheffield and Cardiff, industrial sponsors, and cohorts of doctoral students to tackle major challenges facing industry and society. 

Our goal is to support major reductions in society’s carbon footprint by finding radically different ways to operate our existing energy systems. We need to reduce or eliminate their carbon dioxide emissions to address climate change concerns and eliminate use of fossil fuels while ensuring affordable and reliable energy. 

Would you like to support our goal? 

The Centre is designed to be industrially focussed. We ensure that all the projects are targeted at meeting specific current and future needs of our partners. We work with numerous companies which cover a broad range of energy-intensive industries. You will spend time working closely with one or more industrial sponsors. 


Five themes

  • Techniques to carbon neutral fuels such as biomass and hydrogen to be used in systems designed for fossil fuels.
  • Use of CO2 as a chemical feedstock for industry and manufacture – turning a waste into a product.
  • Use of biomass as a feedstock for chemical processes as a replacement for fossil fuels.
  • CO2 capture technologies for a range of in industrial sectors, including power, iron, steel, cement and glass-making.
  • Automation of large energy-intensive processes to improve their flexibility and emission performance.



Harman-Thomas J M , Hughes K J., Pourkashanian, M. The development of a chemical kinetic mechanism for combustion in supercritical carbon dioxide. Energy. 2022; 255. https://doi.org/10.1016/j.energy.2022.124490

Ragab R, Parker J, Li M, Liu T, Morris A, Sun W. Requirements for and challenges in developing improved creep ductility-based constitutive models for tempered martensitic CSEF steels. Journal of Materials Research and Technology 2022; 17. https://doi.org/10.1016/j.jmrt.2022.02.047

Ragab R, Parker J, Li M, Liu T, Sun W. Creep crack growth modelling of Grade 91 vessel weldments using a modified ductility based damage model. European Journal of Mechanics - A/Solids. 2022; 91. https://doi.org/10.1016/j.euromechsol.2021.104424

Ragab R, Liu T, Li M, Sun W. Membrane stretching based creep damage analytical solutions for thin disc small punch problem. Journal of the Mechanics and Physics of Solids. 2022; 165. https://doi.org/10.1016/j.jmps.2022.104928


Ragab R, Parker J, Li M, Liu T, Sun W. Modelling of a Grade 91 power plant pressurised header weldment under ultra super-critical creep conditions. International Journal of Pressure Vessels and Piping. 2021;192. https://doi.org/10.1016/j.ijpvp.2021.104389